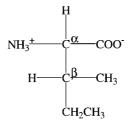
# research papers

Acta Crystallographica Section B Structural Science

ISSN 0108-7681

### Bjørn Dalhus\* and Carl Henrik Görbitz

Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo, Norway


Correspondence e-mail: bjornda@kjemi.uio.no

# Structural relationships in crystals accommodating different stereoisomers of 2-amino-3-methylpenta-noic acid

A reinvestigation of the crystal structure of the 1:1 mixture of the two racemates *DL*-isoleucine and *DL*-allo-isoleucine, with a detailed analysis of interatomic distances between alternative side-chain positions, reveals a systematic distribution of the four stereoisomers in this crystal. Two different molecular chains exist in the crystal and each such chain accommodates a single diastereomeric pair only (L-isoleucine:D-allo-isoleucine or D-isoleucine:L-allo-isoleucine). The crystal is built up by a stacking of such chains in two dimensions and three different packing modes for the two types of chains are discussed. Crystallization experiments of the two individual racemates in the 1:1 mixture of DL-isoleucine:DL-allo-isoleucine have been undertaken. The structure of the racemate DL-isoleucine is presented. The molecular arrangements in this racemate and the 1:1 DL-isoleucine:DL-allo-isoleucine mixture are closely related. Furthermore, the spontaneous resolution of enantiomers upon crystallization of the other racemate, DL-alloisoleucine, is rationalized on the basis of the aforementioned analysis of interatomic distances in the 1:1 DL-isoleucine:DLallo-isoleucine complex. Structural data for a new L-isoleucine: D-allo-isoleucine complex are also given.

#### 1. Introduction

The  $\alpha$ -amino acid 2-amino-3-methylpentanoic acid (isoleucine) embodies two chiral C atoms,  $C^{\alpha}$  and  $C^{\beta}$  (I), and consequently four stereoisomers exist. The isomer with absolute configuration *S* at both  $C^{\alpha}$  and  $C^{\beta}$  (denoted [*S*,*S*]) is the naturally occurring  $\alpha$ -amino acid L-isoleucine (L-IIe), while the [*R*,*R*]-isomer represents its enantiomer, D-isoleucine (D-IIe). The two stereoisomers [*S*,*R*] and [*R*,*S*] are L-allo-isoleucine (L-*allo*-IIe) and D-allo-isoleucine (D-IIe), respectively. The four stereoisomers can form a total of four different 1:1 complexes; the racemates L-IIe:D-IIe [DL-IIe, (1)] and L-allo-IIe:D-allo-IIe [DL-allo-IIe, (2)] as well as the two diastereomeric complexes L-IIe:D-allo-IIe (3) and L-IIe:L-allo-IIe (4), Table 1. As part of our program dealing with hydrogen-bond geometries in the crystal structures of hydrophobic amino



acids (Dalhus & Görbitz, 1999, and references therein) crystallization experiments with these complexes have been

Received 29 November 1999

Accepted 18 February 2000

carried out and in this paper we describe the crystal structures of the racemate DL-IIe (1) and the 1:1 complex L-IIe:D-*allo*-IIe (3).

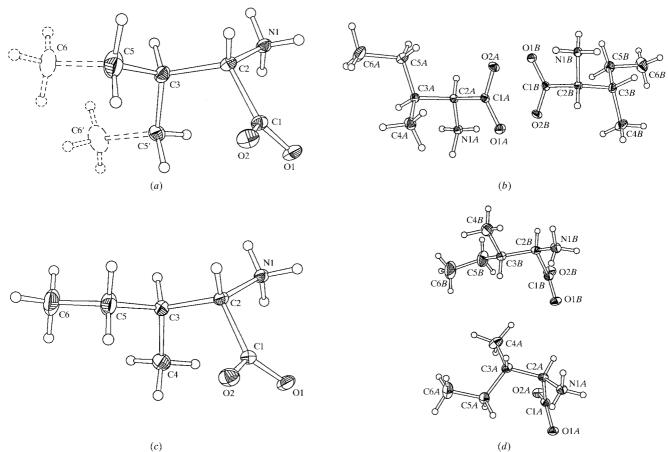
Additionally, we have redetermined the crystal structures of the 1:1:1:1 complex L-Ile:D-Ile:L-*allo*-Ile:D-*allo*-Ile (5), containing all four stereoisomers, and D-*allo*-Ile (6). These two structures have previously been reported by Benedetti *et al.* (1973) and Varughese & Srinivasan (1975), respectively, but the precision of the structural parameters is low by current standards, with no information on the hydrogen-bond geometries.

Crystal structures of seven 1:1 complexes of L-isoleucine with selected hydrophobic D-amino acids have been presented elsewhere (Dalhus & Görbitz, 1999).

#### 2. Experimental

#### 2.1. Crystallization

Aqueous solutions of the four 1:1 mixtures (1)–(4) (Table 1) as well as the equimolar mixture of all four stereoisomers (5) (Table 1) were prepared. Typically, 5–10 mg of each of the amino acids in question were mixed and dissolved in 1000–1500  $\mu$ l of water. The various amino acid solutions were then


#### Table 1

Various complexes of different stereoisomers of 2-amino-3-methylpentanoic acid.

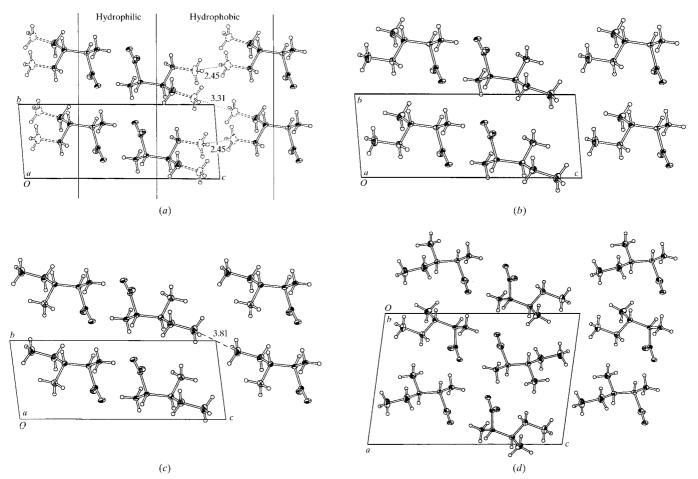
| No. | Stereochemical configuration | Complex                           |
|-----|------------------------------|-----------------------------------|
| (1) | [S,S]: $[R,R]$               | L-Ile:D-Ile                       |
| (2) | [S,R]: $[R,S]$               | L-allo-Ile:D-allo-Ile             |
| (3) | [S,S]:[R,S]                  | L-Ile:D-allo-Ile                  |
| (4) | [S,S]: $[S,R]$               | L-Ile:L-allo-Ile                  |
| (5) | [S,S]:[R,R]:[S,R]:[R,S]      | L-Ile:D-Ile:L-allo-Ile:D-allo-Ile |

mixed with tetramethoxysilane in the ratio 10:1 and 100–150  $\mu$ l of the resulting mixtures were dispensed in each of 10–12 30  $\times$  5 mm test-tubes, sealed with parafilm and left for some minutes to polymerize. Applying the vapor diffusion technique, ethanol or 2-propanol subsequently diffused into the gel at room temperature.

Thin and soft plates of racemate (1) were formed with either alcohol as precipitating agents. Only a few crystals extinguished and brightened satisfactorily when rotated in plane-polarized light, and the specimen used for data collection (from the ethanol batch) was selected after testing a large number of crystals. The diffraction patterns for some of the other crystals are essentially two-dimensional with substantial streaking along  $c^*$ .



#### Figure 1


The asymmetric unit with atomic numbering for (*a*) DL-Ile:DL-*allo*-Ile (5), (*b*) L-Ile:D-*allo*-Ile (3) [molecule *A* is L-Ile and molecule *B* is D-*allo*-Ile], (*c*) DL-Ile [L-isomer only] (1) and (*d*) D-*allo*-Ile (6). Displacement ellipsoids are drawn at the 50% probability level. H atoms are arbitrarily scaled. In (*a*) the disordered  $C^{\delta}$  methyl groups (C6 and C6' with bonded H atoms) are dotted and the disordered  $C^{\gamma 2}$  methyl groups (C4 and C4' with bonded H atoms) have been omitted for clarity.

# research papers

## Table 2

Experimental details.

| Experimental details.                                                             |                                                                                                    |                                                                                                 |                                                                          |                                                                          |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                                                   | (1)                                                                                                | (3)                                                                                             | (5)                                                                      | (6)                                                                      |
| Crystal data                                                                      |                                                                                                    |                                                                                                 |                                                                          |                                                                          |
| Chemical formula                                                                  | $C_6H_{13}NO_2$                                                                                    | $C_6H_{13}NO_2$                                                                                 | $C_6H_{13}NO_2$                                                          | $C_6H_{13}NO_2$                                                          |
| Chemical formula weight                                                           | 131.17                                                                                             | 131.17                                                                                          | 131.17                                                                   | 131.17                                                                   |
| Cell setting                                                                      | Triclinic                                                                                          | Triclinic                                                                                       | Triclinic                                                                | Monoclinic                                                               |
| Space group                                                                       | P1                                                                                                 | P1                                                                                              | $P\overline{1}$                                                          | P2 <sub>1</sub>                                                          |
| a (A)                                                                             | 5.2289 (1)                                                                                         | 5.2438 (2)                                                                                      | 5.2493 (1)                                                               | 9.6706 (1)                                                               |
| $b(\mathbf{A})$                                                                   | 5.4102 (1)                                                                                         | 5.3978 (2)                                                                                      | 5.4006 (1)                                                               | 5.2583 (1)                                                               |
| $c(\mathbf{A})$<br>$\alpha(^{\circ})$                                             | 13.1095 (3)<br>96.332 (1)                                                                          | 13.2562 (6)<br>93.042 (1)                                                                       | 13.2778 (2)<br>92.9433 (6)                                               | 14.1018 (2)<br>90                                                        |
| $\beta (\circ)$                                                                   | 90.622 (1)                                                                                         | 92.811 (1)                                                                                      | 92.8659 (5)                                                              | 98.033 (1)                                                               |
| $\gamma$ (°)                                                                      | 109.493 (1)                                                                                        | 109.897 (1)                                                                                     | 109.8571 (7)                                                             | 90                                                                       |
| $V(A^3)$                                                                          | 347.02 (1)                                                                                         | 351.42 (2)                                                                                      | 352.66 (1)                                                               | 710.05 (2)                                                               |
| Z                                                                                 | 2                                                                                                  | 2                                                                                               | 2                                                                        | 4                                                                        |
| $D_x ({\rm Mg}\;{\rm m}^{-3})$                                                    | 1.255                                                                                              | 1.240                                                                                           | 1.235                                                                    | 1.227                                                                    |
| Radiation type                                                                    | Μο Κα                                                                                              | Μο Κα                                                                                           | Μο Κα                                                                    | Μο Κα                                                                    |
| Wavelength (Å)                                                                    | 0.71073                                                                                            | 0.71073                                                                                         | 0.71073                                                                  | 0.71073                                                                  |
| No. of reflections for cell                                                       | 4333                                                                                               | 3483                                                                                            | 6724                                                                     | 7959                                                                     |
| parameters                                                                        | 0.000                                                                                              |                                                                                                 |                                                                          |                                                                          |
| $\mu (\mathrm{mm}^{-1})$                                                          | 0.093                                                                                              | 0.092                                                                                           | 0.092                                                                    | 0.091                                                                    |
| Temperature (K)<br>Crystal form                                                   | 150 (2)<br>Plate                                                                                   | 140 (2)<br>Plate                                                                                | 150 (2)<br>Plate                                                         | 150 (2)<br>Plate                                                         |
| Crystal size (mm)                                                                 | $0.50 \times 0.50 \times 0.10$                                                                     | $0.45 \times 0.25 \times 0.10$                                                                  | $0.75 \times 0.55 \times 0.30$                                           | $0.90 \times 0.50 \times 0.05$                                           |
| Crystal colour                                                                    | Colourless                                                                                         | Colourless                                                                                      | Colourless                                                               | Colourless                                                               |
|                                                                                   | Colouness                                                                                          | conductors                                                                                      | constantess                                                              | concurrents                                                              |
| Data collection                                                                   |                                                                                                    |                                                                                                 |                                                                          |                                                                          |
| Diffractometer                                                                    | Siemens SMART CCD                                                                                  | Siemens SMART CCD                                                                               | Siemens SMART CCD                                                        | Siemens SMART CCD                                                        |
| Data collection method                                                            | $\omega$ scans                                                                                     | $\omega$ scans                                                                                  | $\omega$ scans                                                           | $\omega$ scans                                                           |
| Absorption correction                                                             | Multi-scan (Sheldrick,                                                                             | Multi-scan (Sheldrick,                                                                          | Multi-scan (Sheldrick,                                                   | Multi-scan (Sheldrick,                                                   |
|                                                                                   | 1996)                                                                                              | 996)                                                                                            | 1996)                                                                    | 1996)                                                                    |
| $T_{\min}$                                                                        | 0.955                                                                                              | 0.959                                                                                           | 0.933                                                                    | 0.921                                                                    |
| $T_{\rm max}$                                                                     | 0.991                                                                                              | 0.991                                                                                           | 0.973                                                                    | 0.995                                                                    |
| No. of measured                                                                   | 8317                                                                                               | 4788                                                                                            | 9079                                                                     | 16 583                                                                   |
| reflections<br>No. of independent                                                 | 5815                                                                                               | 4029                                                                                            | 6187                                                                     | 11 372                                                                   |
| reflections                                                                       | 5015                                                                                               | 4027                                                                                            | 0107                                                                     | 11 572                                                                   |
| No. of observed                                                                   | 4439                                                                                               | 3746                                                                                            | 5540                                                                     | 8967                                                                     |
| reflections                                                                       |                                                                                                    |                                                                                                 |                                                                          |                                                                          |
| Criterion for observed reflec-                                                    | $I > 2\sigma(I)$                                                                                   | $I > 2\sigma(I)$                                                                                | $I > 2\sigma(I)$                                                         | $I > 2\sigma(I)$                                                         |
| tions                                                                             |                                                                                                    |                                                                                                 |                                                                          |                                                                          |
| R <sub>int</sub>                                                                  | 0.0332                                                                                             | 0.0096                                                                                          | 0.0213                                                                   | 0.0286                                                                   |
| $\theta_{\max}$ (°)                                                               | 40                                                                                                 | 32.5                                                                                            | 40.0                                                                     | 40.0                                                                     |
| Range of $h, k, l$                                                                | $-10 \rightarrow h \rightarrow 9$                                                                  | $\begin{array}{c} -8 \rightarrow h \rightarrow 5 \\ -8 \rightarrow k \rightarrow 9 \end{array}$ | $-10 \rightarrow h \rightarrow 10$                                       | $-16 \rightarrow h \rightarrow 20$                                       |
|                                                                                   | $\begin{array}{c} -9 \rightarrow k \rightarrow 11 \\ -26 \rightarrow l \rightarrow 21 \end{array}$ | $-8 \rightarrow k \rightarrow 9$ $-22 \rightarrow l \rightarrow 22$                             | $-10 \rightarrow k \rightarrow 10$<br>$-28 \rightarrow l \rightarrow 28$ | $-10 \rightarrow k \rightarrow 10$<br>$-30 \rightarrow l \rightarrow 25$ |
|                                                                                   | $-20 \rightarrow l \rightarrow 21$                                                                 | $-22 \rightarrow l \rightarrow 22$                                                              | $-28 \rightarrow l \rightarrow 28$                                       | $-30 \rightarrow l \rightarrow 23$                                       |
| Refinement                                                                        |                                                                                                    |                                                                                                 |                                                                          |                                                                          |
| Refinement on                                                                     | $F^2$                                                                                              | $F^2$                                                                                           | $F^2$                                                                    | $F^2$                                                                    |
| $R[F^2 > 2\sigma(F^2)]$                                                           | 0.0576                                                                                             | 0.0326                                                                                          | 0.0605                                                                   | 0.0483                                                                   |
| $wR(F^2)$                                                                         | 0.1562                                                                                             | 0.0934                                                                                          | 0.1915                                                                   | 0.1080                                                                   |
| S                                                                                 | 1.110                                                                                              | 1.104                                                                                           | 1.303                                                                    | 1.074                                                                    |
| No. of reflections used in                                                        | 5815                                                                                               | 4028                                                                                            | 6187                                                                     | 11 371                                                                   |
| refinement                                                                        |                                                                                                    |                                                                                                 |                                                                          |                                                                          |
| No. of parameters used                                                            | 101                                                                                                | 201                                                                                             | 116                                                                      | 196                                                                      |
| Weighting scheme                                                                  | $w = 1/[\sigma^2(F_o^2) + (0.0888P)^2]$                                                            | $w = 1/[\sigma^2(F_o^2) + (0.0675P)^2]$                                                         | $w = 1/[\sigma^2(F_o^2) + (0.0561P)^2]$                                  | $w = 1/[\sigma^2(F_o^2) + (0.0567P)^2]$                                  |
|                                                                                   | + 0.0250P, where                                                                                   | + 0.0025P], where                                                                               | + 0.1597P], where                                                        | + 0.0061P], where                                                        |
| $(\Lambda/\pi)$                                                                   | $P = (F_o^2 + 2F_c^2)/3$                                                                           | $P = (F_o^2 + 2F_c^2)/3$<br>0.001                                                               | $P = (F_o^2 + 2F_c^2)/3$                                                 | $P = (F_o^2 + 2F_c^2)/3$                                                 |
| $(\Delta/\sigma)_{\rm max}$<br>$\Delta\rho_{\rm max}$ (e Å <sup>-3</sup> )        | 0.001<br>0.620                                                                                     | 0.443                                                                                           | 0.032<br>0.585                                                           | -0.002<br>0.535                                                          |
| $\Delta \rho_{\rm max} (c {\bf A})$<br>$\Delta \rho_{\rm min} (e {\rm \AA}^{-3})$ | -0.463                                                                                             | -0.221                                                                                          | -0.344                                                                   | -0.308                                                                   |
| Extinction method                                                                 | None                                                                                               | None                                                                                            | SHELXTL                                                                  | None                                                                     |
|                                                                                   |                                                                                                    |                                                                                                 | (Sheldrick, 1995)                                                        |                                                                          |
| Extinction coefficient                                                            | _                                                                                                  | _                                                                                               | 1.23 (7)                                                                 | _                                                                        |
| Source of atomic scattering                                                       | International Tables for                                                                           | International Tables for                                                                        | International Tables for                                                 | International Tables for                                                 |
| factors                                                                           | Crystallography (1992, Vol.                                                                        | Crystallography (1992, Vol.                                                                     | Crystallography (1992, Vol.                                              | Crystallography (1992, Vol.                                              |
|                                                                                   | C, Tables 4.2.6.8 and                                                                              | C, Tables 4.2.6.8 and                                                                           | C, Tables 4.2.6.8 and                                                    | C, Tables 4.2.6.8 and                                                    |
|                                                                                   | 6.1.1.4)                                                                                           | 6.1.1.4)                                                                                        | 6.1.1.4)                                                                 | 6.1.1.4)                                                                 |
| Commenter                                                                         |                                                                                                    |                                                                                                 |                                                                          |                                                                          |
| Computer programs<br>Structure solution                                           | SHELYTL (Shaldwick 1005)                                                                           | SHELYTI (Shaldwick 1005)                                                                        | SHELVTI (Shaldwick 1005)                                                 | SHELVTL (Shaldwish 1005)                                                 |
| Structure solution<br>Structure refinement                                        | SHELXTL (Sheldrick, 1995)<br>SHELXTL (Sheldrick, 1995)                                             | SHELXTL (Sheldrick, 1995)<br>SHELXTL (Sheldrick, 1995)                                          | SHELXTL (Sheldrick, 1995)<br>SHELXTL (Sheldrick, 1995)                   | SHELXTL (Sheldrick, 1995)<br>SHELXTL (Sheldrick, 1995)                   |
|                                                                                   | STILLATE (SHEILINK, 1995)                                                                          | SHELATE (SIERINK, 1993)                                                                         | STILLATE (SHEILINK, 1993)                                                | SHELATE (Sheldrick, 1993)                                                |



#### Figure 2

Molecular packing diagram for (a) DL-Ile:DL-allo-Ile (5), (b) L-Ile:D-allo-Ile (3), (c) DL-Ile (1) and (d) D-allo-Ile (6). In (a) the disordered C<sup> $\delta$ </sup> methyl groups (C6 and C6' with bonded H atoms) are drawn with broken lines and the disordered C<sup> $\gamma$ 2</sup> methyl groups (C4 and C4' with bonded H atoms) have been omitted for clarity. Furthermore, the three molecules in the upper row in (a) are translated one unit along the *a* axis relative to the molecules in the lower row. The short methyl contacts (in Å, see text) are indicated by dotted lines.

The two enantiomers of racemate (2) were always spontaneously resolved upon crystallization, rendering a structure determination of this racemate impossible.

Well diffracting plate-shaped crystals of complex (3) were obtained readily, with both ethanol and 2-propanol. However, ethanol seems to have a positive effect on the thickness of the crystals. Similarly, complex (5), with all four stereoisomers present, formed relatively large plates with both alcohols. The crystal used in the diffraction experiment was taken from the ethanol batch. Complex (4), on the other hand, gave only extremely thin needles (typically less than 0.01 mm) unsuitable for conventional X-ray diffraction experiments.

A thin plate of *D-allo*-Ile (6), crystallized using 2-propanol from a sample of known chirality, was used in the reinvestigation of this structure.

#### 2.2. Data collection, structure determination and refinement

The data collections were performed with a Siemens SMART CCD diffractometer (Siemens, 1995) and nominally covered over a hemisphere of reciprocal space. The datasets are 99% complete to at least  $\theta = 32.5^{\circ}$  [(1), (5) and (6)] and 40° (3). Friedel pairs have not been merged, since this introduces

small systematic errors (*SHELXTL*; Sheldrick, 1995). Experimental conditions with information on the data reduction and refinement results are summarized in Table 2.<sup>1</sup> All structures were determined by direct methods using *SHELXTL* (Sheldrick, 1995).

All non-H atoms were refined anisotropically. Amino H atoms were refined isotropically. H atoms bonded to C were placed geometrically and refined with constraints to keep all C-H distances and all C-C-H angles on one C atom the same. Free rotation about C-C bonds was permitted for methyl groups. Isotropic displacement parameters for the H atoms were fixed at  $1.5U_{eq}$  (for  $-CH_3$ ) or  $1.2U_{eq}$  (for  $-CH_2$ -and -CH-) of the bonded C atom. In the model for (5) atoms C4, C5 and C6 correspond to D/L-IIe, while C4', C5' and C6' correspond to D/L-allo-IIe. The occupancy of each stereoisomer was confined by symmetry to be 0.5. [A refinement of the occupancy factors gives 0.48 (1) and 0.52 (1) for C6 and C6', respectively]. C6 and C6' give rise to two independent peaks in the electron density map, while C4 and C5'

<sup>&</sup>lt;sup>1</sup> Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS0046). Services for accessing these data are described at the back of the journal.

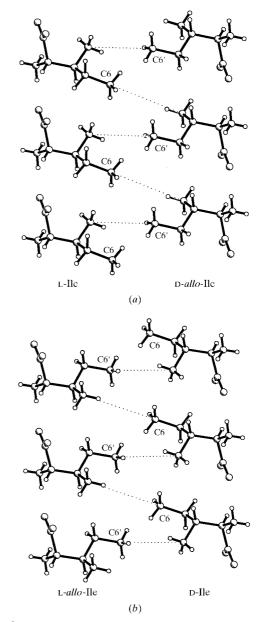
#### Table 3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$  for DL-Ile (1), L-Ile:D-*allo*-Ile (3), DL-Ile:DL-*allo*-Ile (5) and D-*allo*-Ile (6).

$$U_{\rm eq} = (1/3) \Sigma_i \Sigma_j U^{ij} a^i a^j \mathbf{a}_i . \mathbf{a}_j.$$

| C6 $0.3293$ (2) $0.1342$ (2) $0.90085$ (7) $0.0371$ (2)p-Ile:D-allo-Ile (3)O1A $0.9524$ (2) $0.6557$ (2) $0.57652$ (6) $0.0149$ (2)O2A $0.5127$ (2) $0.5281$ (2) $0.61114$ (6) $0.01442$ (15)N1A $0.9645$ (2) $0.1650$ (2) $0.56582$ (7) $0.0118$ (2)C1A $0.7340$ (2) $0.4885$ (2) $0.60067$ (7) $0.0105$ (2)C2A $0.7406$ (2) $0.2121$ (2) $0.62044$ (7) $0.0105$ (2)C2A $0.7406$ (2) $0.2121$ (2) $0.62044$ (7) $0.0105$ (2)C3A $0.7765$ (2) $0.1732$ (2) $0.73401$ (7) $0.0124$ (2)C4A $0.9848$ (3) $0.4177$ (3) $0.79132$ (9) $0.0184$ (2)C5A $0.5015$ (3) $-0.0009$ (3) $0.88809$ (9) $0.0303$ (2)O1B $0.3355$ (2) $0.15514$ (15) $0.40100$ (6) $0.01413$ (15)O2B $0.7748$ (2) $0.2815$ (2) $0.36717$ (6) $0.0144$ (2)N1B $0.3217$ (2) $0.3217$ (2) $0.37729$ (7) $0.0108$ (2)C2B $0.5494$ (2) $0.5993$ (2) $0.35807$ (7) $0.0109$ (2)C3B $0.5233$ (2) $0.6409$ (2) $0.24385$ (8) $0.0141$ (2)C4B $0.8033$ (3) $0.7279$ (3) $0.20184$ (11) $0.0264$ (3)D52B $0.3228$ (3) $0.3951$ (3) $0.8385$ (8) $0.0187$ (2)C6B $0.2612$ (3) $0.4403$ (3) $0.07347$ (8) $0.0318$ (3)DL-Ile:DL-allo-Ille (5) $0.4403$ (3) $0.07347$ (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | x            | у            | z            | $U_{ m eq}$  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|--------------|--------------|--------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DL-Ile (1)       |              |              |              |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • • •            | 0.80323(9)   | 0.75963 (8)  | 0.58960(4)   | 0.01627(9)   |
| NI         0.81846 (10)         0.26922 (9)         0.57840 (4)         0.01351 (8)           C1         0.58380 (11)         0.59662 (10)         0.61364 (4)         0.01216 (8)           C2         0.58889 (10)         0.32193 (10)         0.63253 (4)         0.01191 (8)           C3         0.61101 (12)         0.29197 (11)         0.74779 (5)         0.01447 (9)           C4         0.81181 (15)         0.54061 (14)         0.8885 (6)         0.022303 (13)           C6         0.3293 (2)         0.1342 (2)         0.90085 (7)         0.0371 (2)           p-Ile:p-allo-Ile (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | ( )          |              |              |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              | · · ·        |              |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              | · · ·        | ( )          | . ,          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              |              |              |              |
| $\begin{array}{ccccc} C4 & 0.81181 (15) & 0.54061 (14) & 0.80856 (6) & 0.02060 (12) \\ C5 & 0.33004 (15) & 0.2148 (2) & 0.79270 (6) & 0.02330 (13) \\ D-lle:D-allo-lle (3) & 0.1342 (2) & 0.90085 (7) & 0.0371 (2) \\ D-lle:D-allo-lle (3) & 0.5281 (2) & 0.51752 (6) & 0.0149 (2) \\ O2A & 0.5127 (2) & 0.5281 (2) & 0.5114 (6) & 0.01442 (15) \\ N1A & 0.9645 (2) & 0.1650 (2) & 0.56582 (7) & 0.0118 (2) \\ C1A & 0.7340 (2) & 0.4885 (2) & 0.60067 (7) & 0.0105 (2) \\ C2A & 0.7406 (2) & 0.2121 (2) & 0.62044 (7) & 0.0105 (2) \\ C3A & 0.7765 (2) & 0.1732 (2) & 0.73401 (7) & 0.0124 (2) \\ C4A & 0.9848 (3) & 0.4177 (3) & 0.79132 (9) & 0.0184 (2) \\ C5A & 0.5015 (3) & -0.0009 (3) & 0.88809 (9) & 0.0303 (2) \\ C6A & 0.5155 (3) & -0.0009 (3) & 0.88809 (9) & 0.0303 (2) \\ O1B & 0.3355 (2) & 0.15514 (15) & 0.40100 (6) & 0.01413 (15) \\ O2B & 0.7748 (2) & 0.2815 (2) & 0.36717 (6) & 0.0144 (2) \\ O1B & 0.5541 (2) & 0.3217 (2) & 0.37729 (7) & 0.0108 (2) \\ C2B & 0.5494 (2) & 0.5993 (2) & 0.35807 (7) & 0.0109 (2) \\ C3B & 0.5233 (2) & 0.6409 (2) & 0.24385 (8) & 0.0141 (2) \\ C4B & 0.8033 (3) & 0.7279 (3) & 0.2184 (11) & 0.0264 (3) \\ C5B & 0.3228 (3) & 0.3951 (3) & 0.18385 (8) & 0.0187 (2) \\ C6B & 0.2612 (3) & 0.4403 (3) & 0.07347 (8) & 0.0318 (3) \\ D1-lle:D1-allo-lle (5) & 0.0153 (10) \\ C1 & 0.08990 (14) & 0.58294 (13) & 0.61188 (5) & 0.01132 (10) \\ C2 & 0.09599 (13) & 0.30626 (15) & 0.74491 (6) & 0.01437 (11) \\ C4^{\dagger} & 0.3310 (2) & 0.5107 (2) & 0.80368 (7) & 0.0226 (2) \\ C5^{\dagger} & -0.1495 (2) & 0.1817 (2) & 0.78999 (9) & 0.0256 (2) \\ C5^{\dagger} & -0.1495 (2) & 0.1817 (2) & 0.7899 (9) & 0.0256 (2) \\ C5^{\dagger} & -0.1495 (2) & 0.1817 (2) & 0.78999 (9) & 0.0256 (2) \\ C4^{\dagger} & -0.1495 (2) & 0.1817 (2) & 0.7899 (9) & 0.0256 (2) \\ C5^{\dagger} & -0.3310 (2) & 0.5107 (2) & 0.80368 (7) & 0.0280 (15) \\ C4^{\dagger} & -0.1495 (2) & 0.1817 (2) & 0.7899 (9) & 0.0256 (2) \\ C5^{\dagger} & -0.3100 (2) & 0.5107 (2) & 0.80368 (7) & 0.0280 (15) \\ C4^{\dagger} & -0.1495 (2) & 0.1817 (2) & 0.7899 (9) & 0.0256 (2) \\ C5^{\dagger} & -0.3310 (2) & 0.5107 (2) & 0.80368 (7) & 0.02308 (15) \\ C4^{\dagger} & -0.1495 (2) & 0.1817 (2) & $ |                  |              | ( )          |              |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              | · · ·        |              | . ,          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C5               |              | · · ·        |              | 0.02330 (13) |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C6               |              |              |              | · · ·        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D-Ile:D-allo-Ile | ( )          | ( )          |              |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O1A              | 0.9524 (2)   | 0.6557 (2)   | 0.57652 (6)  | 0.0149 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O2A              | 0.5127 (2)   | 0.5281 (2)   | 0.61114 (6)  | 0.01442 (15) |
| $\begin{array}{ccccc} C2A & 0.7406 (2) & 0.2121 (2) & 0.62044 (7) & 0.0105 (2) \\ C3A & 0.7765 (2) & 0.1732 (2) & 0.73401 (7) & 0.0124 (2) \\ C4A & 0.9848 (3) & 0.4177 (3) & 0.79132 (9) & 0.0184 (2) \\ C5A & 0.5015 (3) & -0.0009 (3) & 0.88809 (9) & 0.0303 (2) \\ O1B & 0.3355 (2) & 0.15514 (15) & 0.40100 (6) & 0.01413 (15) \\ O2B & 0.7748 (2) & 0.2815 (2) & 0.36717 (6) & 0.0144 (2) \\ N1B & 0.3217 (2) & 0.6441 (2) & 0.41060 (7) & 0.0117 (2) \\ C1B & 0.5541 (2) & 0.3217 (2) & 0.37729 (7) & 0.0108 (2) \\ C2B & 0.5494 (2) & 0.5993 (2) & 0.35807 (7) & 0.0109 (2) \\ C3B & 0.5233 (2) & 0.6409 (2) & 0.24385 (8) & 0.0141 (2) \\ C4B & 0.8033 (3) & 0.7279 (3) & 0.20184 (11) & 0.0264 (3) \\ C5B & 0.3228 (3) & 0.3951 (3) & 0.18385 (8) & 0.0187 (2) \\ C6B & 0.2612 (3) & 0.4403 (3) & 0.07347 (8) & 0.0318 (3) \\ DL-IIe:DL-allo-IIe (5) \\ O1 & 0.30806 (12) & 0.75015 (11) & 0.58772 (5) & 0.01528 (10) \\ O2 & -0.13094 (12) & 0.62306 (12) & 0.62196 (5) & 0.01533 (10) \\ N1 & 0.32122 (13) & 0.26020 (12) & 0.57762 (5) & 0.01132 (10) \\ C2 & 0.09599 (13) & 0.30626 (13) & 0.61188 (5) & 0.01132 (10) \\ C3 & 0.1269 (2) & 0.26586 (15) & 0.74491 (6) & 0.01437 (11) \\ C4^{\dagger} & 0.3310 (2) & 0.5107 (2) & 0.80368 (7) & 0.02080 (15) \\ C5^{\dagger} & -0.1495 (2) & 0.1817 (2) & 0.78999 (9) & 0.0256 (2) \\ C6^{\dagger} & -0.1310 (6) & 0.0921 (6) & 0.8984 (2) & 0.0337 (5) \\ C4^{\dagger} & -0.1495 (2) & 0.1817 (2) & 0.78999 (9) & 0.0256 (2) \\ C5^{\dagger} & 0.3340 (7) & 0.4049 (7) & 0.9153 (2) & 0.0344 (5) \\ D-allo-IIe (6) \\ O2A & 0.73315 (5) & 0.99335 (10) & 0.63843 (4) & 0.01703 (9) \\ NIA & 0.89125 (6) & 0.40288 (11) & 0.57706 (4) & 0.01513 (8) \\ O2A & 0.73315 (5) & 0.99335 (10) & 0.63843 (4) & 0.01703 (9) \\ NIA & 0.89125 (6) & 0.40288 (11) & 0.57830 (5) & 0.01444 (10) \\ C1A & 0.74430 (6) & 0.67242 (12) & 0.6186 (7) & 0.02280 (15) \\ C5^{\prime} & 0.3840 (7) & 0.4049 (7) & 0.9153 (2) & 0.0344 (5) \\ D-allo-IIe (6) \\ O2A & 0.89154 (6) & 0.64770 (12) & 0.63891 (7) & 0.02280 (15) \\ C5^{\prime} & 0.3840 (7) & 0.4393 (2) & 0.8933 (6) & 0.03148 (9) \\ O1B & 1.6337 (5) & 0.99335 (10) & 0.63843 (4) & 0.01733 (9) \\ NIA & $                         | N1A              | 0.9645 (2)   | 0.1650 (2)   | 0.56582 (7)  | 0.0118 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C1A              | 0.7340 (2)   | 0.4885 (2)   | 0.60067 (7)  | 0.0105 (2)   |
| $\begin{array}{ccccc} C4A & 0.9848 \ (a) & 0.4177 \ (a) & 0.79132 \ (g) & 0.0184 \ (z) \\ C5A & 0.5015 \ (a) & 0.0912 \ (a) & 0.78135 \ (g) & 0.0203 \ (z) \\ C6A & 0.5155 \ (a) & -0.0009 \ (a) & 0.88809 \ (g) & 0.0303 \ (z) \\ O1B & 0.3355 \ (z) & 0.15514 \ (15) & 0.40100 \ (6) & 0.01413 \ (15) \\ O2B & 0.7748 \ (z) & 0.2815 \ (z) & 0.36717 \ (6) & 0.0144 \ (z) \\ N1B & 0.3217 \ (z) & 0.6441 \ (z) & 0.40100 \ (f) & 0.0114 \ (z) \\ C1B & 0.5541 \ (z) & 0.3217 \ (z) & 0.37729 \ (7) & 0.0108 \ (z) \\ C2B & 0.5494 \ (z) & 0.5993 \ (z) & 0.37807 \ (7) & 0.0108 \ (z) \\ C2B & 0.5494 \ (z) & 0.5993 \ (z) & 0.35807 \ (7) & 0.0108 \ (z) \\ C3B & 0.5233 \ (z) & 0.6409 \ (z) & 0.24385 \ (g) & 0.0141 \ (z) \\ C4B & 0.8033 \ (a) & 0.7279 \ (a) & 0.20184 \ (11) & 0.0264 \ (a) \\ C5B & 0.3228 \ (a) & 0.3951 \ (a) & 0.18385 \ (g) & 0.0187 \ (z) \\ C6B & 0.2612 \ (a) & 0.4403 \ (a) & 0.07347 \ (g) & 0.0318 \ (a) \\ D1-IIe:D1-allo-IIe \ (5) \\ O1 & 0.30806 \ (12) & 0.75015 \ (11) & 0.58772 \ (5) & 0.01528 \ (10) \\ O2 & -0.13094 \ (12) & 0.62306 \ (12) & 0.62196 \ (5) & 0.01533 \ (10) \\ N1 & 0.32122 \ (13) & 0.26020 \ (12) & 0.57762 \ (5) & 0.01533 \ (10) \\ C1 & 0.08990 \ (14) & 0.58294 \ (13) & 0.61158 \ (5) & 0.01132 \ (10) \\ C2 & 0.09599 \ (13) & 0.30626 \ (13) & 0.63118 \ (5) & 0.01136 \ (10) \\ C3 & 0.1269 \ (2) & 0.26586 \ (15) & 0.7491 \ (6) & 0.01437 \ (11) \\ C4^{\dagger} & 0.3310 \ (2) & 0.5107 \ (2) & 0.80368 \ (7) & 0.02080 \ (15) \\ C5^{\dagger} & -0.1495 \ (2) & 0.1817 \ (2) & 0.78999 \ (g) & 0.0256 \ (2) \\ C5^{\dagger} & 0.3310 \ (2) & 0.5107 \ (2) & 0.80368 \ (7) & 0.02080 \ (15) \\ C4^{\dagger} & 0.3310 \ (2) & 0.5107 \ (2) & 0.80368 \ (7) & 0.02080 \ (15) \\ C4^{\dagger} & 0.3310 \ (2) & 0.5107 \ (2) & 0.80368 \ (7) & 0.02080 \ (15) \\ C4^{\dagger} & -0.1495 \ (2) & 0.61873 \ (11) & 0.58600 \ (4) & 0.01513 \ (8) \\ O2A & 0.73315 \ (5) & 0.9335 \ (10) & 0.63843 \ (4) & 0.01703 \ (g) \\ N1A & 0.89125 \ (6) & 0.464770 \ (12) & 0.63091 \ (5) & 0.01219 \ (g) \\ C3A & 0.94088 \ (6) & 0.60770 \ (13) & 0.7380 \ (5) & 0.01444 \ (10) \\ C4A & 1.01413 \ (g) & 0.8529 \ (2) & 0.780897 \ (7) & 0$                                   | C2A              | 0.7406 (2)   | 0.2121 (2)   | 0.62044 (7)  | 0.0105 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C3A              | 0.7765 (2)   | 0.1732 (2)   | 0.73401 (7)  | 0.0124 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C4A              | 0.9848 (3)   | 0.4177 (3)   | 0.79132 (9)  | 0.0184 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C5A              | 0.5015 (3)   | 0.0912 (3)   | 0.78135 (9)  | 0.0203 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C6A              | 0.5155 (3)   | -0.0009(3)   | 0.88809 (9)  | 0.0303 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O1B              | 0.3355 (2)   | 0.15514 (15) | 0.40100 (6)  | 0.01413 (15) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O2B              | 0.7748 (2)   | 0.2815 (2)   | 0.36717 (6)  | 0.0144 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N1 <i>B</i>      | 0.3217 (2)   | 0.6441 (2)   | 0.41060 (7)  | 0.0117 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C1 <i>B</i>      | 0.5541 (2)   | 0.3217 (2)   | 0.37729 (7)  | 0.0108 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2B              | 0.5494 (2)   | 0.5993 (2)   | 0.35807 (7)  | 0.0109 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C3B              | 0.5233 (2)   | 0.6409 (2)   | 0.24385 (8)  | 0.0141 (2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C4B              | 0.8033 (3)   | 0.7279 (3)   | 0.20184 (11) | 0.0264 (3)   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C5B              | 0.3228 (3)   | 0.3951 (3)   | 0.18385 (8)  | 0.0187 (2)   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C6B              | 0.2612 (3)   | 0.4403 (3)   | 0.07347 (8)  | 0.0318 (3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DL-Ile:DL-allo-  | Ile (5)      |              |              |              |
| N1 $0.32122$ (13) $0.26020$ (12) $0.57762$ (5) $0.01253$ (10)C1 $0.08990$ (14) $0.58294$ (13) $0.61158$ (5) $0.01132$ (10)C2 $0.09599$ (13) $0.30626$ (13) $0.63118$ (5) $0.01136$ (10)C3 $0.1269$ (2) $0.26586$ (15) $0.74491$ (6) $0.01437$ (11)C4† $0.3310$ (2) $0.5107$ (2) $0.80368$ (7) $0.02080$ (15)C5† $-0.1495$ (2) $0.1817$ (2) $0.78999$ (9) $0.0256$ (2)C6† $-0.1310$ (6) $0.0921$ (6) $0.8984$ (2) $0.0337$ (5)C4'† $-0.1495$ (2) $0.1817$ (2) $0.78999$ (9) $0.0256$ (2)C5'† $0.3310$ (2) $0.5107$ (2) $0.80368$ (7) $0.02080$ (15)C6'† $0.3340$ (7) $0.4649$ (7) $0.9153$ (2) $0.0344$ (5) $p$ -allo-Ile (6) $0.61873$ (11) $0.58600$ (4) $0.01513$ (8)O2A $0.73315$ (5) $0.99335$ (10) $0.63843$ (4) $0.01703$ (9)N1A $0.89125$ (6) $0.40288$ (11) $0.57706$ (4) $0.01137$ (8)C1A $0.74430$ (6) $0.66705$ (13) $0.73830$ (5) $0.01464$ (10)C4A $1.01413$ (9) $0.8529$ (2) $0.78089$ (7) $0.0249$ (2)C5A $0.83562$ (8) $0.5049$ (2) $0.79516$ (5) $0.01878$ (11)C6A $0.89085$ (12) $0.4393$ (2) $0.89933$ (6) $0.00304$ (2)O1B $1.16317$ (5) $1.22830$ (11) $0.61895$ (4) $0.01637$ (9)O2B $1.24741$ (6) $1.62364$ (11) $0.61819$ (5)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O1               |              | 0.75015 (11) | 0.58772 (5)  | 0.01528 (10) |
| C1 $0.08990$ (14) $0.58294$ (13) $0.61158$ (5) $0.01132$ (10)C2 $0.09599$ (13) $0.30626$ (13) $0.63118$ (5) $0.01136$ (10)C3 $0.1269$ (2) $0.26586$ (15) $0.74491$ (6) $0.01437$ (11)C4† $0.3310$ (2) $0.5107$ (2) $0.80368$ (7) $0.02080$ (15)C5† $-0.1495$ (2) $0.1817$ (2) $0.78999$ (9) $0.0256$ (2)C6† $-0.1310$ (6) $0.0921$ (6) $0.8984$ (2) $0.0337$ (5)C4'† $-0.1495$ (2) $0.1817$ (2) $0.78999$ (9) $0.0256$ (2)C5'† $0.3310$ (2) $0.5107$ (2) $0.80368$ (7) $0.02080$ (15)C6'† $0.3340$ (7) $0.4649$ (7) $0.9153$ (2) $0.0344$ (5)D-allo-Ile (6) $0.09335$ (10) $0.63843$ (4) $0.01703$ (9)N1A $0.64390$ (5) $0.61873$ (11) $0.58600$ (4) $0.01513$ (8)O2A $0.73315$ (5) $0.99335$ (10) $0.63843$ (4) $0.01703$ (9)N1A $0.89125$ (6) $0.40288$ (11) $0.57706$ (4) $0.0117$ (8)C1A $0.74430$ (6) $0.64770$ (12) $0.61626$ (4) $0.01199$ (9)C2A $0.89164$ (6) $0.60705$ (13) $0.73830$ (5) $0.01464$ (10)C4A $1.01413$ (9) $0.8529$ (2) $0.78089$ (7) $0.0249$ (2)C5A $0.83562$ (8) $0.5049$ (2) $0.79516$ (5) $0.01878$ (11)C6A $0.89085$ (12) $0.4393$ (2) $0.89933$ (6) $0.0304$ (2)O1B $1.16317$ (5) $1.22830$ (11) $0.61895$ (4) $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | -0.13094(12) | 0.62306 (12) | 0.62196 (5)  |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              | · · ·        |              |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              | · · ·        |              | . ,          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              |              |              |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              | · · · ·      |              |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | ( )          |              |              |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              |              |              |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              |              |              |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              |              |              |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |              |              |              | . ,          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 0.3840 (7)   | 0.4649 (7)   | 0.9153 (2)   | 0.0344 (5)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 0 (1200 (5)  | 0(1072(11))  | 0.59(00.(4)  | 0.01512 (9)  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |              | · · ·        |              |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              | · · ·        |              | . ,          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              | · · ·        |              |              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |              | ( )          |              |              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |              | . ,          | . ,          |              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |              | . ,          |              | . ,          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |              | . ,          | . ,          |              |
| O1B         1.16317 (5)         1.22830 (11)         0.58923 (4)         0.01637 (9)           O2B         1.24741 (6)         1.62364 (11)         0.61395 (4)         0.02034 (10)           N1B         1.43383 (6)         1.04848 (12)         0.60816 (4)         0.01535 (9)           C1B         1.25852 (6)         1.38685 (12)         0.61819 (5)         0.01262 (9)           C2B         1.39799 (6)         1.27240 (13)         0.66580 (5)         0.01338 (9)           C3B         1.38807 (7)         1.18566 (14)         0.76921 (5)         0.01600 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |              | . ,          |              |              |
| O2B         1.24741 (6)         1.62364 (11)         0.61395 (4)         0.02034 (10)           N1B         1.43383 (6)         1.04848 (12)         0.60816 (4)         0.01535 (9)           C1B         1.25852 (6)         1.38685 (12)         0.61819 (5)         0.01262 (9)           C2B         1.39799 (6)         1.27240 (13)         0.66580 (5)         0.01338 (9)           C3B         1.38807 (7)         1.18566 (14)         0.76921 (5)         0.01600 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | . ,          |              |              |              |
| N1B         1.43383 (6)         1.04848 (12)         0.60816 (4)         0.01535 (9)           C1B         1.25852 (6)         1.38685 (12)         0.61819 (5)         0.01262 (9)           C2B         1.39799 (6)         1.27240 (13)         0.66580 (5)         0.01338 (9)           C3B         1.38807 (7)         1.18566 (14)         0.76921 (5)         0.01600 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |              | . ,          | . ,          | . ,          |
| C1B         1.25852 (6)         1.38685 (12)         0.61819 (5)         0.01262 (9)           C2B         1.39799 (6)         1.27240 (13)         0.66580 (5)         0.01338 (9)           C3B         1.38807 (7)         1.18566 (14)         0.76921 (5)         0.01600 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | ( )          | . ,          |              | . ,          |
| C2B         1.39799 (6)         1.27240 (13)         0.66580 (5)         0.01338 (9)           C3B         1.38807 (7)         1.18566 (14)         0.76921 (5)         0.01600 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |              | . ,          |              |              |
| C3B 1.38807 (7) 1.18566 (14) 0.76921 (5) 0.01600 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |              | . ,          |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |              |              | ( )          |              |
| $(7) \qquad 1.32314 (7) \qquad 1.0379 (2) \qquad 0.01430 (7) \qquad 0.0289 (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | ( )          | ( )          |              | ( )          |
| C5B 1.34993 (10) 1.4083 (2) 0.83059 (6) 0.0320 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | . ,          | . ,          | . ,          |              |
| C5B         1.34993 (10)         1.4083 (2)         0.83059 (6)         0.0320 (2)           C6B         1.31314 (10)         1.3257 (2)         0.92814 (7)         0.0469 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | ( )          |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 1.51514 (10) | 1.5257 (2)   | 0.72014 (7)  | 0.0707 (3)   |

 $\dagger$  C4, C5 and C6 apply to D/L-Ile, while C4', C5' and C6' apply to D/L-allo-Ile. The occupancy factors for all six atoms are fixed at 0.5.


share the same set of parameters (constrained by the *EXYZ* and *EADP* cards in *SHELXTL*; Sheldrick, 1995), as do also C5 and C4'.

#### 3. Results and discussion

Atomic coordinates for all four structures are listed in Table 3. Selected geometric parameters are given in Table 4 and hydrogen-bond geometries are listed in Table 5. Figs. 1(a)-(d) show the molecular conformations, including atomic numbering for the four structures.

#### 3.1. Molecular geometry

There are no unusual features in the overall geometry for the molecules in these four structures, Table 4. In both DL-



## Figure 3

(a) Chain of L-Ile:D-allo-Ile molecules in (5). (b) Chain of D-Ile:L-allo-Ile molecules in (5).

#### Table 4

Selected distances and torsions (Å, °) for DL-Ile (1), L-Ile:D-*allo*-Ile (3), DL-Ile:DL-*allo*-Ile (5) and D-*allo*-Ile (6).

| DL-Ile (1)                                     |                        |                                                |              |
|------------------------------------------------|------------------------|------------------------------------------------|--------------|
| 01–C1                                          | 1.2592 (7)             | C2-C3                                          | 1.5445 (8)   |
| O2-C1                                          | 1.2591 (7)             | C3-C5                                          | 1.5307 (9)   |
| N1-C2                                          | 1.4927 (7)             | C3-C4                                          | 1.5328 (9)   |
| C1-C2                                          | 1.5427 (7)             | C5-C6                                          | 1.5282 (12)  |
| O1 - C1 - C2 - N1                              | -22.95 (7)             | N1-C2-C3-C5                                    | -153.14(5)   |
| N1 - C2 - C3 - C4                              | 81.48 (6)              | $C_2 - C_3 - C_5 - C_6$                        | 169.79 (7)   |
|                                                | 01.10 (0)              |                                                | 105.15 (1)   |
| L-Ile:D-allo-Ile (3)                           |                        |                                                |              |
| O1A-C1A                                        | 1.2619 (12)            | O1B-C1B                                        | 1.2589 (13)  |
| O2A - C1A                                      | 1.2622 (13)            | O2B-C1B                                        | 1.2602 (13)  |
| N1A - C2A                                      | 1.4950 (15)            | N1B-C2B                                        | 1.4932 (15)  |
| C1A - C2A                                      | 1.5397 (15)            | C1B-C2B                                        | 1.542 (2)    |
| C2A - C3A                                      | 1.5425 (13)            | C2B-C3B                                        | 1.5486 (14)  |
| C3A - C4A                                      | 1.531 (2)              | C3B-C4B                                        | 1.525 (2)    |
| C3A - C5A                                      | 1.534 (2)              | C3B-C5B                                        | 1.535 (2)    |
| C5A - C6A                                      | 1.531 (2)              | C5B - C5B<br>C5B - C6B                         | 1.533 (2)    |
| CJA-COA                                        | 1.551 (2)              | 0.00-0.00                                      | 1.555 (2)    |
| O1A - C1A - C2A - N1A                          | -23.81(12)             | O1B-C1B-C2B-N1B                                | 22.43 (12)   |
| N1A - C2A - C3A - C4A                          | 81.08 (11)             | N1B-C2B-C3B-C4B                                | 152.52 (11)  |
| N1A - C2A - C3A - C5A                          | -153.38(10)            | N1B-C2B-C3B-C5B                                | -82.05(12)   |
| C2A - C3A - C5A - C6A                          | 169.10 (10)            | C2B-C3B-C5B-C6B                                | 172.06 (10)  |
|                                                | 10).10 (10)            |                                                | 172.00 (10)  |
| DL-Ile:DL-allo-Ile (5)†                        |                        |                                                |              |
| O1-C1                                          | 1.2611 (9)             | C3-C4                                          | 1.5338 (12)  |
| O2-C1                                          | 1.2623 (9)             | C3-C5                                          | 1.5289 (13)  |
| N1-C2                                          | 1.4937 (9)             | C5 - C6                                        | 1.551 (3)    |
| C1-C2                                          | 1.5404 (9)             | C3–C4′                                         | 1.5289 (13)  |
| C2-C3                                          | 1.5453 (10)            | C3–C5′                                         | 1.5338 (12)  |
| C5'-C6'                                        | 1.542 (2)              |                                                | 10000 (12)   |
| O1-C1-C2-N1                                    | -23.30(9)              | N1-C2-C3-C4′                                   | -152.95 (7)  |
| N1 - C2 - C3 - C4                              | 81.64 (8)              | N1-C2-C3-C5'                                   | 81.64 (8)    |
| N1 - C2 - C3 - C5                              | -152.95(7)             | C2-C3-C5'-C6'                                  | -174.73 (14) |
| C2 - C3 - C5 - C6                              | 169.89 (15)            | 62 65 65 66                                    | 17 1.75 (11) |
| 02 03 03 00                                    | 105.05 (15)            |                                                |              |
| D-allo-Ile (6)                                 |                        |                                                |              |
| O1A - C1A                                      | 1.2569 (8)             | O1B-C1B                                        | 1.2676 (8)   |
| O2A - C1A                                      | 1.2623 (8)             | O2B-C1B                                        | 1.2504 (9)   |
| N1A - C2A                                      | 1.4944 (8)             | N1B-C2B                                        | 1.4986 (9)   |
| C1A - C2A                                      | 1.5344 (8)             | C1B-C2B                                        | 1.5424 (8)   |
| C2A - C3A                                      | 1.5512 (9)             | C2B-C3B                                        | 1.5437 (9)   |
| C3A - C4A                                      | 1.5271 (11)            | C3B-C4B                                        | 1.5275 (11)  |
| C3A - C5A                                      | 1.5356 (10)            | C3B-C5B                                        | 1.5316 (11)  |
| C5A - C6A                                      | 1.5306 (10)            | C5B-C6B                                        | 1.5310 (11)  |
| O1A - C1A - C2A - N1A                          | 17.68 (8)              | O1B - C1B - C2B - N1B                          | 43.22 (7)    |
| N1A - C2A - C3A - C4A                          | 152.47 (6)             | N1B-C2B-C3B-C4B                                | 56.35 (8)    |
| N1A - C2A - C3A - C4A<br>N1A - C2A - C3A - C5A | -81.92(7)              | N1B - C2B - C3B - C4B<br>N1B - C2B - C3B - C5B | -179.37(6)   |
| C2A - C3A - C5A - C6A                          | -81.92(7)<br>174.68(7) | C2B - C3B - C5B - C5B                          | 169.71(3)    |
|                                                | 1/7.00 (/)             | 020-030-030-000                                | 107.71 (3)   |
|                                                |                        |                                                |              |

† C4, C5 and C6 apply to D/L-Ile, whilst C4', C5' and C6' apply to D/L-allo-Ile.

Ile:DL-*allo*-Ile (5) and L-Ile:D-*allo*-Ile (3) the conformation of D-*allo*-Ile corresponds to that of molecule A in the D-*allo*-Ile (6) structure. The molecular conformation of L-Ile is similar in the three structures where this molecule is present, (1), (3) and (5).

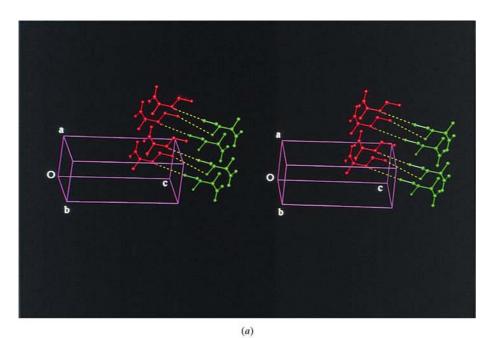
#### 3.2. Crystal packing

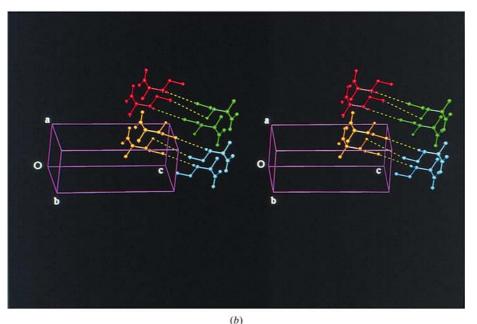
The molecular packing arrangement in the four structures is illustrated in Figs. 2(a)-(d). The layer-like build-up of crystals is a consequence of the dual character of these molecules; the charged  $\alpha$ -amino and  $\alpha$ -carboxylate groups form hydrogen bonds with each other, while the hydrophobic side chains are involved in van der Waals' interactions only. The hydrophilic and hydrophobic layers are emphasized in Fig. 2(a). **3.2.1.** DL-Ile:DL-allo-Ile (5). This structure is a mixture of all four stereoisomers of the title compound. In the original structure description (Benedetti *et al.*, 1973)<sup>2</sup> the crystal is described as a solid solution of the two racemic pairs DL-Ile and DL-allo-Ile in a ratio not significantly different from 1:1.

A close inspection of the interatomic distances between the alternative positions for the disordered side-chain atoms in the hydrophobic layer reveals two relatively short  $C \cdot \cdot \cdot C$ contacts;  $C6' \cdots C6'^{i}$  [symmetry code: (i) -x+1, -v+1,2.452 (5) Å -z + 2] and C6···C6<sup>ii</sup> [symmetry code: (ii) -x, -y, -z+2] 3.315 (6) Å, Fig. 2(a). The corresponding shortest H · · · H contacts are 1.84 and 2.45 Å, respectively. The molecules involved in these contacts form chains parallel to the *ab* diagonal. To avoid these short methyl...methyl contacts, one of the two conflicting positions in each such contact has to be vacant. This restriction gives rise to two different molecular chains, one with the diastereomeric pair L-Ile:D-allo-Ile (Fig. 3a) and one with D-Ile:Lallo-Ile (Fig. 3b). Allthough the structure is locally non-centrosymmetric, the overall structure is centrosymmetric. The 1:1:1:1 ratio between the four stereoisomers is a direct consequence of the 1:1 ratio between the

diastereomers in each molecular chain combined with the centrosymmetric space group.

A complete hydrophobic layer is generated by a stacking of the molecular arrangements depicted in Figs. 3(a) and (b). Three alternative models exist for the build-up of this hydrophobic layer:


- (i) a stacking of one of the depicted arrangements only,
- (ii) a systematic alternating stacking and
- (iii) a random stacking of the two arrangements.


In the first model only a single diastereomeric pair (L-Ile:D*allo*-Ile or D-Ile:L-*allo*-Ile) is present within a specific hydrophobic layer. The molecular distribution in this model is illu-

<sup>&</sup>lt;sup>2</sup> Erroneously registered as DL-isoleucine (Refcode DLILEU) in the Cambridge Structural Database (Allen & Kennard, 1993).

strated in Fig. 4(a). Since only two of the four stereoisomers in the crystal are included in each hydrophobic layer, the crystal must be built up by a stacking of two types of layer, one with the pair L-Ile:D-*allo*-Ile and one with D-Ile:L-*allo*-Ile. This model puts no restriction on the ratio between the two aforementioned diastereomeric pairs.

If, on the other hand, an alternating stacking of the arrangements in Figs. 3(a) and (b) is assumed, all four stereoisomers coexist in a single hydrophobic layer and, automatically, in equimolar numbers. The Ile and *allo*-Ile





#### Figure 4

Stereoplot illustrating two of the three proposed molecular packing arrangements in a single hydrophobic layer of DL-Ile:DL-*allo*-Ile (5). (*a*) Layer accommodating a single diastereomeric pair (red = L-Ile, green = D-*allo*-Ile). (*b*) Layer with all four stereoisomers present (red = L-Ile, orange = L-*allo*-Ile, green = D-*allo*-Ile, blue = D-Ile). The contacts illustrated in Figs. 3(*a*) and (*b*) are displayed with yellow dots.

molecules within a single molecular layer alternate along both the a and b axes, Fig. 4(b).

The last model, with a random stacking of the aforementioned alternative arrangements, also represents a model in which all four stereoisomers are present within each hydrophobic layer. However, as with the first model, the ratio between the two diastereomeric pairs can, in principle, take any value.

From the above analysis of the short methyl...methyl contacts – unveiling two different molecular arrangements

encompassing a single diastereomeric pair - it may be concluded that the distribution of the four stereoisomers is not random throughout the crystal. However, it is not possible, from the structural data for (5), to establish which of the three proposed arrangements most likely occurs in the crystals. There are only small differences in the short non-bonding methyl ··· methyl distances in the three models; all such contacts across the hydrophobic layer in the three models have  $C \cdot \cdot \cdot C$ distances in the range 3.91-3.93 Å, with corresponding  $H \cdot \cdot \cdot H$  distances between 2.63 and 2.79 Å.

3.2.2. L-Ile:D-allo-Ile (3). The two stereoisomers in this complex aggregate in double layers, one with L-Ile and one with D-allo-Ile, Fig. 2(b). The molecular packing in the hydrophobic layer in this structure (Fig. 2b) and the L-Ile:D-allo-Ile double layer (Fig. 3a) in the first model for (5) is identical. The C6···C6'<sup>iii</sup> [symmetry code: (iii) -x, -y + 1, -z + 2] 3.935 (5) Å contact in (5) is only slightly altered in this complex; in (3) the corresponding distance is 3.918 (2) Å. The other  $C6' \cdots C6^{ii}$  3.913 (5) Å contact in (5) is unchanged practically in (3),3.910 (2) Å. It is noteworthy that the molecular conformations in (3) and in the L-Ile:D-allo-Ile pair in (5) are almost identical; the largest difference for corresponding torsion angles is 2.7° [C2B-C3B-C5B-C6B for D-allo-Ile in (3) and C2-C3-C5'-C6' for Dallo-Ile in (5)], Table 4.

**3.2.3.** DL-Ile (1). Analogous to (3), the two enantiomers in this racemate crystallize in double layers, with the Dallo-Ile molecules in (3) replaced by D-Ile (Fig. 2c). The structure of (1) can be generated from the structure of (5) by occupying all the C6 positions and leaving all the C6' positions vacant.

#### Table 5

Hydrogen-bond geometry (Å, °).

D-H,  $H \cdots A^{a}$  and  $D-H \cdots A$  based on experimental H-atom positions;  $H \cdots A^{b}$  for N-H bonds normalized to 1.030 Å (Taylor & Kennard, 1983).

| $D - H \cdot \cdot \cdot A$              | $D-{\rm H}$ | $H \cdot \cdot \cdot A^a$ | $H \cdot \cdot \cdot A^b$ | $D - \mathbf{H} \cdot \cdot \cdot A$ | $D \cdots A$ |
|------------------------------------------|-------------|---------------------------|---------------------------|--------------------------------------|--------------|
| DL-Ile (1)                               |             |                           |                           |                                      |              |
| $N1 - H1 \cdots O2^{i}$                  | 0.95 (1)    | 1.97 (1)                  | 1.886                     | 164 (1)                              | 2.888 (1)    |
| $N1 - H2 \cdots O1^{ii}$                 | 0.85 (1)    | 1.91 (1)                  | 1.725                     | 175 (1)                              | 2.752 (1)    |
| $N1-H3\cdots O2^{iii}$                   | 0.91 (1)    | 2.10 (1)                  | 1.988                     | 157 (1)                              | 2.955 (1)    |
| L-Ile:D-allo-Ile (3)                     |             |                           |                           |                                      |              |
| $N1A - H1A \cdots O2A^{i}$               | 1.06 (4)    | 1.86 (3)                  | 1.889                     | 162 (2)                              | 2.887 (1)    |
| $N1A - H2A \cdots O1A^{ii}$              | 0.92 (3)    | 1.83 (3)                  | 1.712                     | 175 (2)                              | 2.740 (1)    |
| $N1A - H3A \cdots O2B$                   | 0.79(2)     | 2.19 (2)                  | 1.972                     | 159 (2)                              | 2.943 (1)    |
| $N1B - H1B \cdots O2B^{iv}$              | 0.84(2)     | 2.06 (2)                  | 1.879                     | 164 (1)                              | 2.878 (1)    |
| $N1B - H2B \cdots O1B^{v}$               | 0.89 (2)    | 1.85 (2)                  | 1.715                     | 177 (2)                              | 2.744 (1)    |
| $N1B-H3B\cdots O2A$                      | 0.93 (2)    | 2.09 (2)                  | 2.001                     | 156 (2)                              | 2.967 (1)    |
| DL-Ile:DL-allo-Ile (5)                   |             |                           |                           |                                      |              |
| $N1 - H1 \cdots O2^{i}$                  | 0.91(2)     | 2.00(2)                   | 1.889                     | 164 (2)                              | 2.888 (1)    |
| $N1 - H2 \cdots O1^{ii}$                 | 0.89(2)     | 1.85 (2)                  | 1.715                     | 175 (2)                              | 2.742 (1)    |
| $N1{-}H3{\cdots}O2^{vi}$                 | 0.82 (2)    | 2.16 (2)                  | 1.956                     | 165 (2)                              | 2.958 (1)    |
| D-allo-Ile (6)                           |             |                           |                           |                                      |              |
| $N1A - H1A \cdots O2A^{ii}$              | 0.88(2)     | 1.98 (2)                  | 1.828                     | 169 (1)                              | 2.845 (1)    |
| $N1A - H2A \cdots O1B^{ii}$              | 0.89(1)     | 1.88 (1)                  | 1.740                     | 175 (1)                              | 2.768 (1)    |
| $N1A - H3A \cdots O1B^{vii}$             | 0.88(2)     | 2.13 (2)                  | 2.009                     | 145 (1)                              | 2.891 (1)    |
| $N1B - H1B \cdots O2B^{ii}$              | 0.85(2)     | 2.05 (2)                  | 1.874                     | 165 (1)                              | 2.879 (1)    |
| $N1B - H2B \cdot \cdot \cdot O2A^{i}$    | 0.90 (1)    | 2.00 (1)                  | 1.871                     | 167 (1)                              | 2.881 (1)    |
| $N1B - H3B \cdot \cdot \cdot O1A^{viii}$ | 0.89 (1)    | 1.88 (1)                  | 1.739                     | 172 (2)                              | 2.761 (1)    |

† Symmetry codes: (i) x + 1, y, z; (ii) x, y - 1, z; (iii) -x + 1, -y + 1, -z + 1; (iv) x - 1, y, z; (v) x, y + 1, z; (vi) -x, -y + 1, -z + 1; (vii)  $-x + 2, y - \frac{1}{2}, -z + 1$ ; (viii)  $-x + 2, y + \frac{1}{2}, -z + 1$ .

The short  $C6 \cdots C6^{ii}$  distance of 3.315 (6) Å in (5) (Fig. 2*a*) must then be increased to permit the presence of methyl groups in all the C6 positions. Indeed, this is precisely what happens in the crystal of DL-Ile; the  $C6 \cdots C6^{iv}$  [symmetry code: (iv) -x + 1, -y, -z + 2] distance is increased by 0.5 Å to 3.810 (3) Å (Fig. 2*c*).

This repositioning of the terminal C6 methyl groups is feasible without gross alterations in the molecular arrangement (Figs. 2a and c) and the hydrogen-bond arrangement in the hydrophilic layer is left intact, Table 5.

3.2.4. Spontaneous resolution of DL-allo-Ile (2). If the structure of (5) is used as a model template for the generation of the structure of DL-allo-Ile – by occupying all C6' positions and leaving all the C6 positions vacant - a molecular packing with a short  $C6' \cdots C6'^{ii}$  contact of only 2.45 Å is obtained (Fig. 2a). In DL-Ile a shift of 0.5 Å in the  $C6 \cdot \cdot \cdot C6^{iv}$  interaction was achieved by minor modifications in the molecular packing, while in DL-allo-Ile the required shift is approximately 1.5 Å. The observed separation of the enantiomers upon crystallization suggests that it is not possible to rearrange the molecules in this hypothetical DL-allo-Ile structure and eliminate the unfavorable C6'...C6'ii interaction without disrupting the hydrogen-bond pattern. It is thus possible to account for the spontaneous resolution of the enantiomers in DL-allo-Ile at the molecular level. The molecular arrangement in the enantiomeric structure (6), with an alternative hydrogen-bond arrangement, is energetically favored (Fig. 2d).

**3.2.5.** D-allo-Ile (6). Each enantiomer in the racemate DLallo-Ile forms crystals with two crystallographically independent molecules. Further, the hydrogen-bond arrangement is different from that found in (1), (3) and (5), Table 5. The two independent molecules in D-allo-Ile (6) (Figs. 1d and 2d), differ in the side-chain conformation; in molecule  $A \chi^{1,1}$  (N1– C2–C3–C5) is gauche<sup>-</sup>, while in molecule B the corresponding torsion is *trans*. Furthermore, the carboxylate group is approximately symmetric in molecule A, but clearly asymmetric in molecule B, Table 4.

**3.2.6. L-Ile:L-allo-Ile (4).** Only extremely thin needles were obtained upon crystallization of (4) and the crystal shape for this complex is different from those of the individual amino acids L-Ile (Görbitz & Dalhus, 1996) and L-allo-Ile, which both form plate-shaped crystals. This could very well indicate that the molecular arrangement, and hence the hydrogen-bond pattern, in the 1:1 complex (4) is different from that of the individual amino acid structures. Unfortunately, the needles were much too thin for diffraction experiments with a conventional in-house diffractometer.

**3.2.7. Hydrogen bonding.** Experimental and normalized (Taylor & Kennard, 1983) hydrogen-bond geometries are listed in Table 5. The hydrogen-bond patterns in (1), (3) and (5) are isostructural, apart from the increased number of hydrogen bonds due to the lower symmetry in (3). This hydrogen-bond arrangement recurs in other racemates of hydrophobic amino acids with branched side chains; DL-leucine (Di Blasio *et al.*, 1975) and DL-valine (triclinic polymorph: Dalhus & Görbitz, 1996; monoclinic polymorph: Mallikarjunan & Thyagaraja Rao, 1969). The amino H1 (C' –  $C^{\alpha}$ –N–H = gauche<sup>+</sup>) and H2 (C' –  $C^{\alpha}$ –N–H *trans*) atoms in (1), (3) and (5) have normalized hydrogen-bond distances within ranges of 0.010 Å (1.879–1.889 Å) and 0.013 Å (1.712–1.725 Å), respectively.

The purchase of a Siemens SMART diffractometer was made possible through financial support from The Research Council of Norway (NFR).

#### References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31– 37.
- Benedetti, E., Pedone, C. & Sirigu, A. (1973). Acta Cryst. B29, 730–733.
- Dalhus, B. & Görbitz, C. H. (1996). Acta Cryst. C52, 1759-1761.
- Dalhus, B. & Görbitz, C. H. (1999). Acta Cryst. C55, 1547-1555.
- Di Blasio, B., Pedone, C. & Sirigu, A. (1975). Acta Cryst. B**31**, 601–602.
- Görbitz, C. H. & Dalhus, B. (1996). Acta Cryst. C52, 1464–1466.
- Mallikarjunan, M. & Thyagaraja Rao, S. (1969). *Acta Cryst.* B**25**, 296–303.
- Sheldrick, G. M. (1995). *SHELXTL*. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). Sadabs. University of Göttingen, Germany. Siemens (1995). SMART/SAINT. Siemens Analytical X-ray Instru-
- ments Inc., Madison, Wisconsin, USA.
- Taylor, R. & Kennard, O. (1983). Acta Cryst. B39, 133-138.
- Varughese, K. I. & Srinivasan, R. (1975). J. Cryst. Mol. Struct. 5, 317–328.